SEQUENTIAL AND PARALLEL ALGORITHMS FOR THE k CLOSEST PAIRS PROBLEM
نویسندگان
چکیده
منابع مشابه
INFORMATIK Sequential and parallel algori thms for the k closest pairs problem
Let S be a set of n points in D-dimensional space, where D is a constant, and let k be an integer between 1 and (~). A new and simpler proof is given of Salowe's theorem, i.e., a sequential algorithmis given that computes the k c10sest pairs in the set S in O(nlogn + k) time, using O(n + k) space. The algorithm fits in the algebraic decision tree model and is, therefore, optimal. Salowe's algor...
متن کاملSequential and Parallel Algorithms for the Shortest Common Superstring Problem
We design sequential and parallel genetic algorithms, simulated annealing algorithms and improved greedy algorithms for the shortest common superstring problem(SCS), which is to find the shortest string that contains all strings from a given set of strings. The SCS problem is NP-complete [7]. It is even MAX SNP hard [2] i.e. no polynomial-time algorithm exists, that can approximate the optimum ...
متن کاملEfficient Sequential and Parallel Algorithms for the Negative Cycle Problem
We present here an algorithm for detecting (and outputting, if exists) a negative cycle in an n-vertex planar digraph G with real edge weights. Its running time ranges from O(n) up to O(n log n) as a certain topological measure of G varies from 1 up to Θ(n). Moreover, an efficient CREW PRAM implementation is given. Our algorithm applies also to digraphs whose genus γ is o(n).
متن کاملMax-planck-institut @bullet@bullet Fur Informatik Enumerating the K Closest Pairs Optimally Enumerating the K Closest Pairs Optimally*
Let S be a set of n points in D-dimensional space, where D is a constant, and let k be an integer between 1 and (~). An algorithm is given that computes the k closest pairs in the set S in O(nlogn+k) time, using O(n+k) space. The . algorithm fits in the algebraic decision tree model and is, therefore, optimal.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Geometry & Applications
سال: 1995
ISSN: 0218-1959,1793-6357
DOI: 10.1142/s0218195995000167